ON A LATTICE STRUCTURE OF OPERATOR SPACES IN COMPLETE BORNOLOGICAL LOCALLY CONVEX SPACES

JÁN HALUŠKA

ABSTRACT. For \mathbf{X}, \mathbf{Y} complete bornological locally convex spaces, we consider a lattice structure of the space $L(\mathbf{X}, \mathbf{Y})$ of all continuous linear operators $L: \mathbf{X} \to \mathbf{Y}$.

INTRODUCTION

The description of theory of complete bornological locally convex spaces (C.B.L.C.S.) we can find in [4], [6], and [3].

In [1], [2] we have developed a technique for an operator valued measure $\mathbf{m} : \Delta \to L(\mathbf{X}, \mathbf{Y})$, where Δ is a δ -ring of sets, $L(\mathbf{X}, \mathbf{Y})$ the space of all continuous operators $L: \mathbf{X} \to \mathbf{Y}$, where \mathbf{X}, \mathbf{Y} are both C.B.L.C.S. In [1] we gave a more detail explanation of basic $L(\mathbf{X}, \mathbf{Y})$ -measure set structures (H. Weber, cf. [7], considered these structures particularly from topological aspects.). In connection with it, a Bartle type integral was investigated. In [2], convergences in measure, almost everywhere, almost uniform (and relations between them) were studied.

In the present paper we consider the lattice structure of the range space of such measure \mathbf{m} , the space $L(\mathbf{X}, \mathbf{Y})$.

1. Preliminaries

Let \mathbf{X}, \mathbf{Y} be two C.B.L.C.S. over the field of real or complex numbers equipped with the bornologies $\mathfrak{B}_{\mathbf{X}}, \mathfrak{B}_{\mathbf{Y}}$. The basis \mathcal{U} of the bornology $\mathfrak{B}_{\mathbf{X}}$ has a marked element $u_0 \in \mathcal{U}$, if $u_0 \subset u$ for every $u \in \mathcal{U}$. Let the bases \mathcal{U}, \mathcal{W} be chosen to consist of all $\mathfrak{B}_{\mathbf{X}^-}, \mathfrak{B}_{\mathbf{Y}^-}$ bounded Banach disks in \mathbf{X}, \mathbf{Y} , with marked elements $u_0 \in \mathcal{U}, u_0 \neq \{0\}$, and $w_0 \in \mathcal{W}, w_0 \neq \{0\}$, respectively. Remind that a Banach disk in \mathbf{X} is a set which is closed, absolutely convex and the linear span of which is a Banach space. The space \mathbf{X} is an inductive limit of Banach spaces $\mathbf{X}_u, u \in \mathcal{U}$,

$$\mathbf{X} = \lim \operatorname{ind}_{u \in \mathcal{U}} \mathbf{X}_u,$$

cf. [4], where \mathbf{X}_u is a linear span of $u \in \mathcal{U}$ and \mathcal{U} is directed by inclusion (analogously for \mathbf{Y} and \mathcal{W}).

¹⁹⁹¹ Mathematics Subject Classification. Primary 06 F 20; Secondary 47 B 37.

 $Key\ words\ and\ phrases.$ Complete bornological locally convex spaces, Distibutive lattices, Spaces of linear operators.

Supported by Grant GA-SAV 367/92.

¹

JÁN HALUŠKA

On \mathcal{U} the lattice operations are defined as follows. For $u_1, u_2 \in \mathcal{U}$ we have: $u_1 \wedge u_2 =$ $u_1 \cap u_2, u_1 \lor u_2 = \operatorname{acs}(u_1 \cup u_2)$, where acs denotes the topological closure of the absolutely convex span of the set. Analogously for \mathcal{W} . For $(u_1, w_1), (u_2, w_2) \in \mathcal{U} \times \mathcal{W}$, we write $(u_1, w_1) \ll (u_2, w_2)$ if and only if $u_1 \subset u_2$ and $w_1 \supset w_2$.

2. LATTICE STRUCTURE OF $L(\mathbf{X}, \mathbf{Y})$

If p_w is Minkowski functional of the set $w \in \mathcal{W}$, then for $u \in \mathcal{U}, L \in L(\mathbf{X}, \mathbf{Y})$, we put $p_{u,w}(L) = \sup_{\mathbf{x} \in u} p_w(L(\mathbf{x}))$ (If w does not absorb $L(\mathbf{x}), \mathbf{x} \in u$, we put $p_{u,w}(L) = \infty$.). Denote by $\mathcal{L}_{u,w} = \{L \in L(\mathbf{X}, \mathbf{Y}); p_{u,w}(L) < \infty\}, (u,w) \in \mathcal{U} \times \mathcal{W}, \text{ and } \mathfrak{L}_{\mathcal{U},\mathcal{W}} =$ $\{\mathcal{L}_{u,w}; (u,w) \in \mathcal{U} \times \mathcal{W}\}$. For $(u,w) \in \mathcal{U} \times \mathcal{W}$, a sequence $L_n \in L(\mathbf{X}, \mathbf{Y}), n = 1, 2, \dots$, is said to be convergent to $L \in L(\mathbf{X}, \mathbf{Y})$ in $\mathcal{L}_{u,w}$ whenever $\lim_{n \to \infty} p_{u,w}(L_n - L) = 0$. On $\mathcal{L}_{\mathcal{U},\mathcal{W}}$ define the operations \wedge, \vee and an order \ll . For $(u_1, w_1), (u_2, w_2) \in \mathcal{U} \times \mathcal{W}$,

 $\mathcal{L}_{u_1,w_1} \vee \mathcal{L}_{u_2,w_2} = \mathcal{L}_{u_1 \wedge u_2,w_1 \vee w_2}, \mathcal{L}_{u_1,w_1} \wedge \mathcal{L}_{u_2,w_2} = \mathcal{L}_{u_1 \vee u_2,w_1 \wedge w_2},$

 $\mathcal{L}_{u_2,w_2} \ll \mathcal{L}_{u_1,w_1}$ if and only if $(u_1,w_1) \ll (u_2,w_2)$.

It is easy to see that \land, \lor are *lattice operations*.

Theorem 1. The family $\mathfrak{L}_{\mathcal{U},\mathcal{W}}$ of operator spaces is a distributive lattice.

Proof. For $(u_1, w_1), (u_2, w_2), (u_3, w_3) \in \mathcal{U} \times \mathcal{W}$, we have:

$$\begin{aligned} \mathcal{L}_{u_1,w_1} \lor \left(\mathcal{L}_{u_2,w_2} \land \mathcal{L}_{u_3,w_3} \right) = & \mathcal{L}_{u_1,w_1} \lor \mathcal{L}_{u_2 \lor u_3,w_2 \land w_3} \\ = & \mathcal{L}_{u_1 \land (u_2 \lor u_3),w_1 \lor (w_2 \land w_3)} \\ = & \mathcal{L}_{(u_1 \land u_2) \lor (u_1 \land u_3),(w_1 \lor w_2) \land (w_1 \lor w_3)} \\ = & \mathcal{L}_{u_1 \land u_2,w_1 \lor w_2} \land \mathcal{L}_{u_1 \land u_3,w_1 \lor w_2} \\ = & (\mathcal{L}_{u_1,w_1} \lor \mathcal{L}_{u_2,w_2}) \land (\mathcal{L}_{u_1,w_1} \lor \mathcal{L}_{u_3,w_2}). \end{aligned}$$

By [5], Th.2.2, $\mathcal{L}_{\mathcal{U},\mathcal{W}}$ is a distributive lattice.

The lattice $\mathfrak{L}_{\mathcal{U},\mathcal{W}}$ introduces a topology of an inductive limit on $L(\mathbf{X},\mathbf{Y})$, i.e. there holds the following theorem.

Theorem 2. $L(\mathbf{X}, \mathbf{Y}) = \lim \operatorname{ind}_{(u,w) \in \mathcal{U} \times \mathcal{W}} \mathcal{L}_{u,w}$.

Proof. For $u \in \mathcal{U}, w \in \mathcal{W}$, it is easy to verify that $\mathcal{L}_{u,w}$ is a vector subspace of $L(\mathbf{X}, \mathbf{Y})$ equipped with the topology given by the seminorm $p_{u,w}$.

Show that $\bigcup_{(u,w)\in\mathcal{U}\times\mathcal{W}}\mathcal{L}_{u,w}=L(\mathbf{X},\mathbf{Y})$. The inclusion $\bigcup_{(u,w)\in\mathcal{U}\times\mathcal{W}}\mathcal{L}_{u,w}\subset L(\mathbf{X},\mathbf{Y})$ is trivial. Show $\bigcup_{(u,w)\in\mathcal{U}\times\mathcal{W}}\mathcal{L}_{u,w}\supset L(\mathbf{X},\mathbf{Y})$. Let $L\in L(\mathbf{X},\mathbf{Y})$. So, to each $u\in\mathcal{U}$ there exists $w_{u,L} \in \mathcal{W}$ such that $L(u) \subset w_{u,L}$, i.e. $p_{u,w_{u,L}}(L) \leq 1 < \infty$. Thus, $L \in \mathcal{L}_{u,w_{u,L}} \subset \bigcup_{(u,w)\in\mathcal{U}\times\mathcal{W}} \mathcal{L}_{u,w}.$

Let $(u_1, w_1), (u_2, w_2) \in \mathcal{U} \times \mathcal{W}$. Show now that if $\mathcal{L}_{u_2, w_2} \ll \mathcal{L}_{u_1, w_1}$, then $\mathcal{L}_{u_2, w_2} \subset$ \mathcal{L}_{u_1,w_1} and if a sequence $L_n \in L(\mathbf{X},\mathbf{Y}), n = 1, 2, \ldots$, of operators converges to $L \in L(\mathbf{X}, \mathbf{Y})$ in \mathcal{L}_{u_2, w_2} , then it converges to L also in \mathcal{L}_{u_1, w_1} . Indeed, by definition, $(u_1, w_1) \ll (u_2, w_2) \Leftrightarrow u_1 \subset u_2 \land w_1 \supset w_2$. The relation $u_1 \subset u_2$ implies $p_{u_1, w}(L) \leq u_1 \leq u_2 < u_2 \leq u_2 \leq u_2 < u_2 <$ $p_{u_2,w}(L)$ for every $w \in \mathcal{W}$. The inclusion $w_2 \subset w_1$ implies $p_{w_1}(L(\mathbf{x})) \leq p_{w_2}(L(\mathbf{x}))$ for every $\mathbf{x} \in \mathbf{X}$. From this we have $p_{u,w_1}(L) \leq p_{u,w_2}(L)$ for every $u \in \mathcal{U}$. Thus, $p_{u_1,w_1}(L) \leq p_{u_1,w_2}(L) \leq p_{u_2,w_2}(L)$. So, if $(u_1,w_1) \ll (u_2,w_2)$ and $L \in L(\mathbf{X},\mathbf{Y})$, then $p_{u_1,w_1}(L) \leq p_{u_2,w_2}(L)$. This completes the proof.

Note that in the terminology of [6], $L(\mathbf{X}, \mathbf{Y})$ (as an inductive limit of seminormed spaces) is a bornological convex vector space, cf. [6], chap. 4, §2, Th. 1.

Theorem 3. For every $(u_1, w_1) \in \mathcal{U} \times \mathcal{W}$, the set

$$\mathfrak{I}_{u_1,w_1} = \{ \mathcal{L}_{u,w} \in \mathfrak{L}_{\mathcal{U},\mathcal{W}}; \ \mathcal{L}_{u,w} \ll \mathcal{L}_{u_1,w_1}, \ (u,w) \in \mathcal{U} \times \mathcal{W} \}$$

is an ideal in $\mathfrak{L}_{\mathcal{U},\mathcal{W}}$.

Proof. Let $(p,q), (u,w) \in \mathcal{U} \times \mathcal{W}$. and $(u_1,w_1) \ll (u,w), (u_1,w_1) \ll (p,q)$. Since $u \wedge p = u \cap p \supset u_1, w \lor q = \operatorname{acs}(w \cup q) \subset w_1$, then $\mathcal{L}_{u,w} \lor \mathcal{L}_{p,q} = \mathcal{L}_{u \wedge p, w \lor q} \ll \mathcal{L}_{u_1,w_1}$. Let $(p,q), (u,w) \in \mathcal{U} \times \mathcal{W}$, and $(u_1,w_1) \ll (p,q)$. Then $\mathcal{L}_{u,w} \land \mathcal{L}_{p,q} = \mathcal{L}_{u \lor p, w \land q} \ll \mathcal{L}_{u,w}$.

 $\mathcal{L}_{u_1,w_1}.$

Dually to Theorem 3, we obtain the following corollary.

Corollary 4. For every $(u_2, w_2) \in \mathcal{U} \times \mathcal{W}$, the set

$$\mathfrak{F}_{u_2,w_2} = \{ \mathcal{L}_{u,w} \in \mathfrak{L}_{\mathcal{U},\mathcal{W}}; \ \mathcal{L}_{u_2,w_2} \ll \mathcal{L}_{u,w}, \ (u,w) \in \mathcal{U} \times \mathcal{W} \},\$$

is a filter in $\mathcal{L}_{\mathcal{U},\mathcal{W}}$.

Theorem 5. Let $(u_1, w_1), (u_2, w_2) \in \mathcal{U} \times \mathcal{W}$. If $(u_1, w_1) \ll (u_2, w_2)$, then the order interval $[\mathcal{L}_{u_2, w_2}, \mathcal{L}_{u_1, w_1}] = \mathfrak{I}_{u_1, w_1} \cap \mathfrak{F}_{u_2, w_2}$ in $\mathfrak{L}_{\mathcal{U}, \mathcal{W}}$ is a Boolean algebra with \mathcal{L}_{u_2, w_2} as null and \mathcal{L}_{u_1, w_1} as unit.

Proof. Let $(u, w) \in \mathcal{U} \times \mathcal{W}, (u_1, w_1) \ll (u, w) \ll (u_2, w_2)$. Put

$$\mathcal{L}_{u,w}^{\perp} = \mathcal{L}_{(u_2 \setminus u) \lor u_1, (w_1 \setminus w) \lor w_2} \in [\mathcal{L}_{u_2, w_2}, \mathcal{L}_{u_1, w_1}]$$

and show that $\mathcal{L}_{u,w}^{\perp}$ is a complement of $\mathcal{L}_{u,w}$ in $[\mathcal{L}_{u_2,w_2}, \mathcal{L}_{u_1,w_1}]$. We have:

$$\mathcal{L}_{u,w} \vee \mathcal{L}_{u,w}^{\perp} = \mathcal{L}_{u,w} \vee \mathcal{L}_{(u_2 \setminus u) \vee u_1, (w_1 \setminus w) \vee w_2}$$
$$= \mathcal{L}_{u \wedge [(u_2 \setminus u) \vee u_1], w \vee [(w_1 \setminus w) \vee w_2]}$$
$$= \mathcal{L}_{[u \wedge (u_2 \setminus u)] \vee [u \wedge u_1], w_1 \vee w_2}$$
$$= \mathcal{L}_{u_1, w_1}.$$

Analogously, $\mathcal{L}_{u,w} \wedge \mathcal{L}_{u,w}^{\perp} = \mathcal{L}_{u_2,w_2}$. So, \mathcal{L}_{u_2,w_2} is the null and \mathcal{L}_{u_1,w_1} is the unit of the Boolean algebra $[\mathcal{L}_{u_2,w_2}, \mathcal{L}_{u_1,w_1}]$.

JÁN HALUŠKA

References

- [1] Haluška J., On lattices of set functions in complete bornological locally convex spaces, Simon Stevin (to appear), pp. 22.
- [2] _____, On convergences of measurable functions in complete bornological locally convex spaces, Rev. Roumaine Pures Appl. (to appear), pp. 10.
- [3] Hogbe-Nlend H., Bornologies and Functional Analysis, North-Holland, Amsterdam New York Oxford, 1977.
- [4] Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981.
- [5] Luxemburg W. A. J. and Zaanen A. C., *Riesz Spaces*, Vol. I, North-Holland, Amsterdam London, 1971.
- [6] Radyno J. V., *Linear Equations and Bornology*, (in Russian) Izd. Beloruskogo gosudarstvennogo universiteta, Minsk, 1982.
- Weber H., Topological Boolean Rings. Decomposition of finitely additive set functions, Pacific J. Math. 110 (1984), 471 – 495.

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, S l o v a k i a

E-mail address: jhaluska @ saske.sk