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ON THE CONTINUITY OF THE SEMIVARIATION

IN LOCALLY CONVEX SPACES

JÁN HALUŠKA

Abstract. If the introduced condition (GB) is fulfilled, then everywhere conver-
gence of nets of measurable functions implies convergence in semivariation on a set
of finite variation of a measure m : Σ → L(X,Y) which is σ-additive in the strong
operator topology (Σ is a σ-algebra of subsets and X,Y are both locally convex
spaces). In the case of the purely atomic measure Condition (GB) is fulfilled.

Introduction

In the operator valued measure theory in Banach spaces pointwise convergence
of sequences of measurable functions on a set of finite semivariation implies con-
vergence in (continuous) semivariation of the measure m : Σ → L(X,Y), where Σ
is a σ-algebra of subsets of a set T 6= ∅, and X,Y are Banach spaces, cf. [1]. If X
fails to be metrizable, the relation between these two convergences is quite unlike
the classical situation, cf. Example after Definition 1.11 in [6].

The importance of Condition (B) (for sequences) in the classical measure and
integration theory was stressed by N. N. L u z i n in his dissertation [5]. Condi-
tion (B) for nets in the classical setting was introduced and investigated by B. F.
G o g u a d z e, cf. [2]. We introduce Condition (GB), see Definition 1.2, which gener-
alizes Condition (B) to the case of a measure m : Σ → L(X,Y) which is σ-additive
in the strong operator topology, where Σ is a σ-algebra of subsets and X,Y are both
locally convex spaces. If the introduced condition (GB) is fulfilled, then everywhere
convergence of a net of measurable functions implies convergence in semivariation
on a set of finite variation of the measure m. The new condition concerns families of
submeasures. If the measure m is purely atomic, then Condition (GB) is fulfilled.

1. Preliminaries

By a net (with values in a set D) we mean a function from I to D, where I is
a directed partially ordered set. To be more exact we will sometimes specify that,
for instance, the net is an I-net to indicate that I is an index set for a given net.
For terminology concerning the nets see [4]. N = {1, 2, . . . }.

Let X,Y be two Hausdorff locally convex topological vector spaces over the field
K of real R or complex C numbers. Let P and Q be two families of seminorms
which define the topologies on X and Y, respectively. Let L(X,Y) denotes the
space of all continuous linear operators L : X → Y.

Let T 6= ∅ be a set and let Σ be a σ-algebra of subsets of T . Denote by χE the
characteristic function of the set E.

Let m : Σ → L(X,Y) be an operator valued measure σ-additive in the strong
operator topology, i.e. if E ∈ Σ, then m(E)x is an Y-valued measure for every
x ∈ X.
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Definition 1.1. Let p ∈ P, q ∈ Q. Let E ∈ Σ.
(a) By the p, q-semivariation of a measure m, cf. [6], we mean a set function

m̂p,q : Σ → [0,∞], defined as follows:

m̂p,q(E) = sup q

(
N∑

n=1

m(En)xn

)
,

where the supremum is taken over all finite disjoint partitions {En ∈ Σ; E =⋃N
n=1 En, En ∩ Em = ∅, n 6= m, m, n = 1, 2, . . . , N}, of E and all finite sets

{xn ∈ X; p(xn) ≤ 1, n = 1, 2, . . . , N}, N ∈ N.
(b) By the p, q-variation of a measure m we mean a set function vp,q(m, .) : Σ →

[0,∞], defined as follows:

vp,q(m, E) = sup
N∑

n=1

qp (m(En)) , E ∈ Σ,

(
qp(m(E)) = sup

p(x)≤1

q(m(E)x)

)
.

where the supremum is taken over all finite disjoint partitions {En ∈ Σ; E =⋃N
n=1 En, En ∩ Em = ∅, n 6= m, n,m = 1, 2, . . . , N, N ∈ N} of E.

The proof of the following lemma is trivial.

Lemma 1.2. The p, q-(semi)variation of m is a monotone and σ-additive (σ--
subadditive) set function, and vp,q(∅) = 0, (m̂p,q(∅) = 0), for every p ∈ P and
q ∈ Q.

Note that m̂p,q(E) ≤ vp,q(E) for every q ∈ Q, p ∈ P, E ∈ Σ.

Definition 1.3.
We say that a set E ∈ Σ is of positive variation of a measure m if there exist

q ∈ Q, p ∈ P, such that vp,q(m, E) > 0.
We say that a set E ∈ Σ is m̂-null if m̂p,q(E) = 0 for every q ∈ Q, p ∈ P.
We say that a set E ∈ Σ is of finite variation of a measure m if to every q ∈ Q

there exists p ∈ P, such that vp,q(m, E) < ∞. We will denote this relation shortly
Q →E P, or, q 7→E p, q ∈ Q, p ∈ P.

Note that the relation Q →E P in Definition 1.3 may be different for different
sets E ∈ Σ of finite variation of m.

Definition 1.4. A measure m is said to satisfy Condition (GB) if for every E ∈ Σ
of finite variation and every net of sets Ei ∈ Σ, Ei ⊂ E, i ∈ I, there holds

lim sup
i∈I

Ei 6= ∅

whenever there exist real numbers δ(q, p, E) > 0, p ∈ P, q ∈ Q such that m̂p,q(Ei) ≥
δ(q, p, E) for every i ∈ I and every couple (p, q) ∈ P ×Q, such that q 7→E p.

Definition 1.5. We say that a set A ∈ Σ of positive semivariation of a measure m
is an m̂-atom if every subset E of A is either ∅ or E /∈ Σ. We say that a measure
m is purely atomic if each E ∈ Σ can be expressed in the form E =

⋃∞
k=1 Ak, where

Ak, k ∈ N, are m̂-atoms.
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Definition 1.6. A function f : T → X is said to be measurable if

{t ∈ T ; p(f(t)) ≥ η} ∈ Σ

for every η > 0 and p ∈ P.

Lemma 1.7. If there exists a nonmeasurable set E, such that E ⊂ E0, E0 ∈ Σ,
and every finite subset of E is measurable, then the set of all measurable functions
is not closed with respect to pointwise limits of measurable functions.

Proof. There is shown in [2], 10.1, p. 126, the assertion for increasing nets of
measurable, real and uniformly bounded functions.

Definition 1.8. We say that a net fi, i ∈ I, of measurable functions is eventually
m̂-convergent on E ∈ Σ to a measurable function f , if for every q ∈ Q there is
p ∈ P, such that for every η > 0,

(1) lim
i∈I

m̂p,q({t ∈ E; p(fi(t)− f(t)) ≥ η}) = 0.

2. Condition (GB) and purely atomic L(X,Y)-valued measures

In this section we show that a class of measures satisfying Condition (GB) is non
empty. First, we prove a lemma.

Lemma 2.1. Let E ∈ Σ be a set of positive and finite variation of a (countable)
purely atomic measure m.

If Ak, k ∈ N, is a class of m̂-atoms, such that Ak ⊂ E, k ∈ N, then

vp,q(m, E) =
∞∑

k=1

m̂p,q(Ak)

for every couple (p, q) ∈ P ×Q, such that q 7→E p.

Proof. Let q 7→E p, q ∈ Q, p ∈ P. Then by Definition 1.1 and Lemma 1.2 we obtain

vp,q(m, E) =
∞∑

k=1

vp,q(m, Ak) =
∞∑

k=1

qp(m(Ak)) =

=
∞∑

k=1

sup
p(x)≤1

q(m(Ak)x) =
∞∑

k=1

m̂p,q(Ak),

because Ak, k ∈ N, are m̂-atoms.

Theorem 2.2. If m is a (countable) purely atomic L(X,Y)-valued measure, then
m satisfies Condition (GB).

Proof. Let E ∈ Σ be an arbitrary set of finite variation. Let Ei ∈ Σ, i ∈ I, be a
I-net of sets, such that there are δ(q, p, E) > 0, such that m̂p,q(Ei) ≥ δ(q, p, E) for
every i ∈ I and every couple (p, q) ∈ P ×Q, such that q 7→E p.
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Denote by {Ak; k ∈ N} the class of atoms of the measure m, such that Ak ⊂
E, k ∈ N. Clearly

δ(q, p, E) ≤
∞∑

k=1

m̂p,q(Ak) = vp,q(m, E) < ∞.

To prove the assertion it is enough to show that for every cofinal J-subnet of the
I-net Ei ∈ Σ, i ∈ I, J ⊂ I, there exists an atom A, such that A is a subset of each
element of a cofinal K-subnet of this J-net of sets, K ⊂ J .

Suppose, this is not true for some J-subnet. Without loss of generality let it
be the I-net Ei, i ∈ I, itself. So, for every atom Ak, k ∈ N, there exists an index
ik ∈ I, such that Ak 6⊂ Ei for every i ≥ ik, i ∈ I. Take real numbers ε(q, p, E) > 0,
such that ε(q, p, E) < δ(q, p, E). Then there are non-negative integers N(q, p, E),
such that

∞∑

k=1

m̂p,q(Ak)−
N(q,p,E)∑

k=1

m̂p,q(Ak) < ε(q, p, E).

The existence of such N(q, p, E) follows from the series convergence on the left hand
side of the inequality.

Taking the atom A1 we find an index i1 ∈ I, such that A1 6⊂ Ei for every
i ≥ i1, i ∈ I. Thus, from the σ-subadditivity of the p, q-semivariation of the measure
m, for i ≥ i1, we obtain

m̂p,q(Ei) ≤
∞∑

k=1

m̂p,q(Ak)− m̂p,q(A1).

Further, we find an index i2 ∈ I, i2 ≥ i1, such that A2 6⊂ Ei for every i ≥ i2, i ∈ I,
and

m̂p,q(Ei) ≤
∞∑

k=1

m̂p,q(Ak)− m̂p,q(A1)− m̂p,q(A2)

for every i ≥ i2, i ∈ I. Repeating this procedure by induction we can write:

m̂p,q(Ei) ≤
∞∑

k=1

m̂p,q(Ak)−
N(q,p,E)∑

k=1

m̂p,q(Ak) < ε(q, p, E)

for every i ≥ iN(q,p,E), i, iN(q,p,E) ∈ I.
This contradicts with m̂p,q(Ei) ≥ δ(q, p, E), i ∈ I. The theorem is proved, cf.

also [3].

3. Condition (GB) and eventual m̂-convergence
of measurable functions on measurable sets

In this section we show that Condition (GB) is a necessary and sufficient condi-
tion for the assertion that everywhere convergence of measurable functions implies
eventual m̂-convergence in locally convex setting. Further, as an appendix we show
that a Egorov theorem cannot hold for arbitrary nets of measurable functions with-
out some restrictions putting on the measure, net convergence of functions, or class
of measurable functions.
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Theorem 3.1. Let a measure m satisfy Condition (GB). If a net of measurable
functions fi, i ∈ I, converges everywhere on a set E ∈ Σ of finite variation to a
measurable function f , then it eventually m̂-converges to f on E.

Proof. Let f be a measurable function and fi, i ∈ I, be a net of measurable functions,
such that for every p ∈ P the equality

(2) lim
i∈I

p(fi(t)− f(t)) = 0

is true for every t ∈ E. Show that the net fi, i ∈ I, is eventually m̂-convergent on
E to f .

Let us denote

Ei(p, η) = {t ∈ E; p(fi(t)− f(t)) ≥ η} ∈ Σ,

for every η > 0, p ∈ {p ∈ P; q 7→E p, q ∈ Q}, i ∈ I.
Now, suppose that there are q0 ∈ Q, p0 ∈ P, η0 > 0, δ0 > 0, such that

(3) m̂p0,q0(Ei(p0, η0)) ≥ δ0

holds for a cofinal J-subnet E′
j(p0, η0), j ∈ J, J ⊂ I, of the I-net Ei(p0, η0), i ∈ I.

Consider the J-net E′
j(p0, η0), j ∈ J . From (3) and Condition (GB) we see that

there is a cofinal K-subnet E′′
k (p0, η0), k ∈ K, of the net E′

j(p0, η0), j ∈ J,K ⊂ J ,
such that

E′′ =
⋂

k∈K

E′′
k (p0, η0) 6= ∅.

Take a point t0 ∈ E′′ and k ∈ K. Then clearly

(4) p0(fk(t0)− f(t0)) ≥ η0.

Pointwise convergence (2) of the net fi, i ∈ I, to f implies pointwise convergence
of every subnet of the net fi, i ∈ I, to the same function f . Thus the net fk(t0), k ∈
K, converges to the point f(t0). This is a contradiction with (4).

Theorem 3.2. Let E ∈ Σ be a set of positive and finite variation. Let Ei ∈ Σ, Ei ⊂
E, i ∈ I, be a net of subsets, such that for every couple (p, q) ∈ P × Q, q 7→E p,
there is δ = δ(q, p, E) > 0, such that the inequality m̂p,q(Ei) ≥ δ is true for every
i ∈ I, but lim supi∈I Ei = ∅.

Then there exists a net of uniformly bounded measurable functions, such that
it converges everywhere on the set E to a measurable function, but it does not
eventually m̂-converge to this function on E.

Proof. Let x ∈ X be an arbitrary nonzero element. Put f(t) = 0 ∈ X for every
t ∈ E. It is easy to see that

lim
i∈I

p(x.χEi(t)− f(t)) = 0

for every t ∈ E and p ∈ P. Indeed, let t0 ∈ E. So, there is i0 ∈ I, such that
t0 ∈ E′

i = E \ Ei, for every i ≥ i0, i ∈ I. Thus x.χEi(t0) = 0 for every i ≥ i0, i ∈ I,
and

lim
i∈I

x.χEi(t0) = 0.

On the other hand, for every i ∈ I we have

m̂p,q({t ∈ E; p(x.χEi(t)− f(t)) ≥ 1
2
}) ≥ δ

and the I-net x.χEi , i ∈ I, of functions does not eventually m̂-converge to f .
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Theorem 3.3. Let E ∈ Σ be a set of finite variation. Everywhere convergence of
an I-net fi, i ∈ I, of measurable functions to a measurable function f on E implies
eventual m̂-convergence of the net fi, i ∈ I, to f on E if and only if the measure m
satisfies Condition (GB).

Proof. Combining Theorem 3.1 and Theorem 3.2 we obtain this criterion directly.

Theorem 3.4. Let E ∈ Σ be a set of positive and finite variation. Let {t} ∈
Σ, m̂p,q({t}) = 0, for every t ∈ E, p ∈ P, q ∈ Q.

Then there exists a net of uniformly bounded measurable functions fi, i ∈ I, such
that limi∈I p(fi(t) − f(t)) = 0, for every t ∈ E and for every F ⊂ E,F ∈ Σ,
of positive semivariation, pointwise convergence of the net fi, i ∈ I, on F is not
uniform.

(Uniform convergence we consider with respect to the system of seminorms
||f ||F,p = supt∈F p(f(t)), p ∈ P, F ⊂ F, F ∈ Σ.)

Proof. Let I denote the direction given by the inclusion of sets. Let x ∈ X be an
non-zero element. Let Ei ⊂ E, i ∈ I, be a net of complements of finite subsets
of the set E to E. It is easy to see that x.χEi , i ∈ I, is a (decreasing) I-net of
functions converging to 0 ∈ X at the each point of the set E. But there does not
exist an infinite subset F ⊂ E, such that the I-net x.χEi

, i ∈ I, would converge
uniformly. It follows from the fact that x.χEi(t) = 0 only on a finite subsets of the
set E.
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