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ON CONVERGENCES OF FUNCTIONS

IN COMPLETE BORNOLOGICAL

LOCALLY CONVEX SPACES

JÁN HALUŠKA

Abstract. Convergences in measure, almost everywhere, almost uniform, and rela-
tions between them are studied in the context of operator valued measures in complete
bornological locally convex spaces. A Egoroff-type theorem is proved.

INTRODUCTION

We can observe that in the focus of the present new measure and integration in-
vestigations lie such theories which contain a certain compatibile collection of basic
theorems, a calculus. A skeleton of this collection could be, e.g., the following quadru-
ple: the Lebesgue dominated convergence theorem, the Fubini theorem, the Radon-
Nikodým theorem, and the Egoroff theorem. This calculus enables and determines
further applications of the integral in a concrete branch of mathematics such as the
operator theory, harmonic analysis, field theory, differential equations, distribution the-
ory, or dynamical systems, etc. From this viewpoint, the practical aspects prevail the
theory. For instance, in mathematical physics an integral construction in locally convex
spaces which is based on the net convergence of simple functions can be hardly applied.
On the other hand, we can observe that stochastic integration has at the present time
an real conjuncture just for the reason of its large applicability.

There are Lebesgue-type measure and integration theories in Banach spaces, cf. [4],
[5]. All these integral theories, classical today, fullfil the conditions described above.
There is a natural tendency to generalize integrations from Banach spaces to ” higher
floors”. For instance, there is a question how to construct a theory of integration in
locally convex spaces which are non-metrizable. Another direction is to use vector
lattice structures for operator valued measure integration, cf. [3].

In [8] we have developed a new technique for complete bornological locally convex
spaces and operator valued measure. Then, as an example of applicability of the
technique, the Lebesgue dominated convergence theorem for a Bartle-type integral ([1])
was proved. Let us remind that the problem there was the linearity of the integral. We
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obtained it only for a special type of the measure and the continuity of the semivariation
played a substantial role.

In the present (self-contained) article we develope further the technique from [8].
The specificity of our technique is that we work with lattices. In places where an
object appears in the classical theory, e.g. a submeasure, a norm, a metric, a unit
sphere, a Lp-space, a σ-ideal of null sets, etc., in our theory we work with a lattice
of submeasures, norms, etc. So, we can see an interesting union of the measure and
integration theory with the lattice theory in the frame of functional analysis.

Usually four types of sequential convergences of functions are associated with a
measure: convergence in measure, almost everywhere convergence, almost uniform
convergence, and convergence in the mean, cf. [7]. The purpose of this paper is
to study the first three types of convergences in connection with an L(X,Y)-valued
charge(= a finitely additive measure), where X,Y are complete bornological locally
convex spaces and L(X,Y) is the space of all linear continuous operators L : X → Y.

The convergence in mean is closely related to the kind of integral considered and,
consequently, with convergence theorems for this integral. A different approach than
that in [8] to integration in convex bornological spaces (not necessarily locally convex)
we can find in [2].

The description of the theory of complete bornological locally convex spaces we can
find in [9], [10], and [12]. For a more detail explanation the basic L(X,Y)-measure
set structures when both X,Y are complete bornological locally convex spaces cf. [8].
H. Weber, cf. [13], considered these structures particularly from topological aspects.
Using families of submeasures and the associated topological rings O. Lipovan, cf. [11],
studied convergences of functions mentioned above from different points of view, e.g.
in the setting of a set-valued integration.

1. PRELIMINARIES

Let X,Y be two complete bornological locally convex spaces over the field of real or
complex numbers equipped with the bornologies BX, BY with bases U ,W with marked
elements u0 ∈ U , w0 ∈ W, respectively, cf. [8], Definitions 1.3., 1.4., and 1.11. Remind
that a Banach disk in X is a set which is closed, absolutely convex and the linear span
of which is a Banach space. Let the bases U ,W be chosen to consist of all BX-, BY-
bounded, separable Banach disks in X,Y, respectively. So, X is an inductive limit of
Banach spaces Xu,

X = lim indu∈UXu,

cf. [10], where Xu is a linear span of u ∈ U and U is directed by inclusion (analogously
for Y and W).

On U the lattice operations are defined as follows. For u1, u2 ∈ U we have: u1∧u2 =
u1∩u2, u1∨u2 = acs(u1∪u2), where acs denotes the topological closure of the absolutely
convex span of the set. Analogously for W.

Recall that the basis U of the bornology BX has a marked element u0 ∈ U , u0 6= {0},
if the following property holds: u, q ∈ U ⇒ u ∧ q ⊃ u0.

Let T 6= ∅ be a set. Denote by 2T the potential set of the set T and by ∆ ⊂ 2T a
δ-ring of sets. If A is a system of subsets of the set T , then σ(A) denotes the σ-algebra
generated by the system A. Denote by Σ = σ(∆),N = {1, 2, . . . }.
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We use χE to denote the characteristic function of the set E and L(X,Y) the space
of all continuous linear operators L : X → Y.

By pu : X → [0,∞] we denote Minkowski functional of the set u ∈ U (If u does not
absorb x ∈ X, we put pu(x) = ∞.). Similarly, pw denotes Minkowski functional of the
set w ∈ W.

For every (u,w) ∈ U ×W, denote by m̂u,w a (u,w)-semivariation of a charge m :

∆ → L(X,Y), where m̂u,w : Σ → [0,∞], m̂u,w(E) = sup pw

(∑I
i=1 m(E ∩ Ei)xi

)
,

E ∈ Σ, where the supremum is taken over all finite sets {xi ∈ X; xi ∈ u, i = 1, 2, . . . , I}
and all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. It is well-known that m̂u,w, is a
monotone, subadditive set function, and m̂u,w(∅) = 0 for every (u, w) ∈ U × W.
Denote by m̂U,W = {m̂u,w; (u, w) ∈ U × W}, cf. [8], Definition 2.7 and Lemmas
2.10−2.15. A set E ∈ Σ is said to be of finite (U ,W)-semivariation if there exists a
couple (u,w) ∈ U ×W, such that m̂u,w(E) < ∞.

Denote by N(m̂u,w) = {N ∈ Σ; m̂u,w(N) = 0}, (u,w) ∈ U × W, cf. [8], Lemma
3.14. A set N ∈ Σ is called m̂U,W -null if there exists a couple (u,w) ∈ U ×W, such
that m̂u,w(N) = 0. We say that an assertion holds m̂U,W -almost everywhere, shortly
m̂U,W -a.e., if it holds everywhere except in an m̂U,W -null set.

A function f : T → X is called ∆-simple if f(T ) is a finite set and f−1(x) ∈ ∆ for
every x ∈ X \ {0}. The space of all ∆-simple functions is denoted by S.

2. CONVERGENCES OF MEASURABLE FUNCTIONS

The following three definitions introduce the analogies of the notions of convergences
almost everywhere, almost uniform, and in measure to the case of operator valued
charges in complete bornological locally convex spaces.

Definition 2.1. Let E ∈ Σ.
(a) Let r ∈ U , (u,w) ∈ U ×W. We say that a sequence fi : T → X, i ∈ N, of func-

tions (r, E)-converges m̂u,w-a.e. to a function f : T → X if limi→∞ pr(fi(t) −
f(t)) = 0 for every t ∈ E \N , where N ∈ N(m̂u,w).

(b) We say that a sequence fi : T → X, i ∈ N, of functions (U , E)-converges m̂U,W -
a.e. to a function f : T → X if there exist r ∈ U , (u,w) ∈ U ×W, such that the
sequence fi, i ∈ N, of functions (r, E)-converges m̂u,w-a.e. to f .

Definition 2.2. Let E ∈ Σ.
(a) Let r ∈ U . We say that a sequence fi : T → X, i ∈ N, of functions (r,E)--

converges uniformly to a function f : T → X if limi→∞ ‖fi − f‖E,r = 0, where
‖f‖E,r = supt∈E pr(f(t)).

(b) Let r ∈ U , (u,w) ∈ U × W. We say that a sequence fi : T → X, i ∈ N, of
functions (r, E)-converges m̂u,w-almost uniformly to a function f : T → X if
for every ε > 0 there exists a set F ∈ Σ, such that m̂u,w(F ) < ε and the
sequence fi, i ∈ N, of functions (r, E \ F )-converges uniformly to f .

(c) We say that a sequence fi : T → X, i ∈ N, of functions (U , E)-converges m̂U,W -
almost uniformly to a function f : T → X if there exist r ∈ U , (u, w) ∈ U ×W,
such that the sequence fi, i ∈ N, of functions (r, E)-converges m̂u,w-almost
uniformly to f .
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Let W ∈ 2T , (u, w) ∈ U ×W. Then we define: m̂∗
u,w(W ) = infE∈Σ,W⊂E m̂u,w(E).

Definition 2.3. Let E ∈ Σ.

(a) Let r ∈ U , (u,w) ∈ U × W. We say that a sequence fi : T → X, i ∈ N, of
functions m̂u,w(r, E)-converges to a function f : T → X if for every ε > 0, δ > 0
there exists iε,δ ∈ N, such that for every i ≥ iε,δ, i ∈ N, the following inequality
is true: m̂∗

u,w({t ∈ E; pr(fi(t)− f(t)) ≥ δ}) < ε.
(b) We say that a sequence fi : T → X, i ∈ N, of functions m̂U,W(U , E)-converges

to a function f : T → X if there exist r ∈ U , (u,w) ∈ U × W, such that the
sequence fi, i ∈ N, of functions m̂u,w(r, E)-converges to f .

The following lemma explains the nature of the sequential convergences given in
Definitions 2.1(b), 2.2(b), and 2.3(b).

Lemma 2.4. Let E ∈ Σ. Let r, r1 ∈ U , (u,w), (u1, w1) ∈ U ×W, r ⊂ r1, u ⊃ u1, w ⊂
w1. If a sequence fi : T → X, i ∈ N,

(a) (r, E)-converges m̂u,w-a.e.,
(b) (r, E)-converges m̂u,w-almost uniformly,
(c) m̂u,w(r,E)-converges,

to a function f : T → X, then the sequence fi, i ∈ N,

(a) (r1, E)-converges m̂u1,w1-a.e.,
(b) (r1, E)-converges m̂u1,w1-almost uniformly,
(c) m̂u1,w1(r1, E)-converges,

to f , respectively.

Proof. It is easy to see that m̂u1,w1(E) ≤ m̂u,w(E) for every E ∈ Σ, cf. [8], Lemma
2.12, and pr(x) ≥ pr1(x) for every x ∈ X. The rest of the proof follows from Definitions
2.1(a), 2.2(a), and 2.3(a), respectively.

Our basis space which we deal with is the space of all measurable functions. We
introduce it with the following definition.

Definition 2.5. We use M∆,U to denote the space of all measurable functions, the
largest vector space of functions f : T → X with the property: there exists r ∈ U , such
that for every u ⊃ r, u ∈ U , and δ > 0 the set {t ∈ T ; pu(f(t)) ≥ δ} ∈ Σ. We say that
a function f is ∆,U-measurable if f ∈M∆,U .

Note that if we suppose all dealing functions to be ∆,U-measurable, then m̂u,w =
m̂∗

u,w for every (u,w) ∈ U ×W in Definition 2.3.

Remark 2.6. It can be proved that M∆,U ⊃ F∆,U , where F∆,U = {f : T → X;∃r ∈
U , ∃fi ∈ S, i ∈ N, ∀t ∈ T : limi→∞ pr(fi(t)− f(t)) = 0}.

The remaining lemmas of this section show that the introduced convergences of
function are correct.

Lemma 2.7. Let E ∈ Σ. If a sequence fi : T → X, i ∈ N, of functions (U , E)-converges
m̂U,W -a.e. to functions f : T → X and g : T → X, too, then f = g m̂U,W -a.e. on E.
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Proof. By assumption, there exist r1 ∈ U , N1 ∈ N(m̂u1,w1), (u1, w1) ∈ U × W, and
r2 ∈ U , N2 ∈ N(m̂u2,w2), (u2, w2) ∈ U × W, such that limi→∞ pr1(fi(t) − f(t)) =
0 for every t ∈ E \N1 and limi→∞ pr2(gi(t)− g(t)) = 0 for every t ∈ E \N2.

Then the uniqness of the bornological limit implies f(t) = g(t) for every t ∈ E \
(N1 ∪N2). Further, N1 ∪N2 = N ∈ N(m̂U,W). Cf. [8], Lemma 1.16, Lemma 2.12, and
Lemma 2.14.

Lemma 2.8. Let E ∈ Σ. If a sequence fi ∈ M∆,U , i ∈ N, of functions m̂U,W(U , E)--
converges to functions f ∈ M∆,U and g ∈ M∆,U , too, then f = g m̂U,W -a.e. on
E ∈ Σ.

Proof. Let ε > 0, δ > 0 be two arbitrary reals, r1, r2 ∈ U , (u1, w1), (u1, w2) ∈ U×W be
as in Definition 2.3 for the functions f and g, respectively. Denote by u = u1 ∧u2, w =
w1∨w2, and r = r1∨ r2. Then there exists iε,δ ∈ N, such that for every i ≥ iε,δ, i ∈ N,
we have:

m̂u,w({t ∈ E; pr(f(t)− g(t)) ≥ 2 · δ}) ≤
≤m̂u,w({t ∈ E; pr(f(t)− fi(t)) ≥ δ} ∪ {t ∈ E; pr(fi(t)− g(t)) ≥ δ})
≤m̂u1,w1({t ∈ E; pr1(f(t)− g(t)) ≥ δ}) + m̂u2,w2({t ∈ E; pr2(f(t)− g(t)) ≥ δ})
<2 · ε.

Since δ > 0, ε > 0 are arbitrary reals, there is m̂u,w({t ∈ E; pr(f(t)− g(t)) 6= 0}) = 0,
i.e. f = g m̂U,W -a.e. on E.

Remark 2.9. Note that Lemma 2.7 and the below Theorem 3.2 imply that if fi : T →
X, i ∈ N, is a sequence of functions which (U , E)-converges m̂U,W -almost uniformly to
f : T → X and g : T → X, too, then f = g m̂U,W -a.e. on E ∈ Σ.

In the sequel of this paper we suppose all functions to be ∆,U-measurable.

3. RELATIONS BETWEEN CONVERGENCES OF FUNCTIONS

In the previous section we introduced some convergences on the space M∆,U which
are generalizations of that classical notions such as almost uniform convergence, con-
vergence almost everywhere and convergence in measure (resp. in semivariation). Con-
cerning the theory of integration in Banach spaces we suppose these notions and rela-
tions between them to be commonly well-known, cf. [6]. The following theorems show
how these relations are satisfied in the context of complete bornological locally convex
spaces.

Theorem 3.1. Let E ∈ Σ be a set of finite (U ,W)-semivariation. If a sequence
fi ∈ M∆,U , i ∈ N, of functions (U , E)-converges m̂U,W -a.e. to a function f ∈ M∆,U ,
then the sequence fi, i ∈ N, of functions m̂U,W(U , E)-converges to f .

Proof. By assumption, there are r ∈ U , (u1, w1) ∈ U ×W, such that for every δ > 0
there exists iδ ∈ N, such that for every i ≥ iδ, i ∈ N, there holds:

pr(fi(t)− f(t)) < δ, t ∈ E \N, m̂u1,w1(N) = 0.
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By assumption, there exists a couple (u2, w2) ∈ U × W , such that m̂u2,w2(E) < ∞.
Denote by u = u1 ∧ u2, w = w1 ∨ w2.

Then for every i ≥ iδ, i ∈ N, we have:

m̂u,w({t ∈ E; pr(fi(t)− f(t)) ≥ δ}) =

=m̂u,w({t ∈ E \N ; pr(fi(t)− f(t)) ≥ δ}) + m̂u,w(N)

≤m̂u2,w2({t ∈ E \N ; pr(fi(t)− f(t)) ≥ δ}) + m̂u1,w1(N)

=m̂u2,w2(∅) = 0.

Theorem 3.2. Let E ∈ Σ. If a sequence fi ∈ M∆,U , i ∈ N, of functions (U , E)--
converges m̂U,W -almost uniformly to a function f ∈M∆,U , then the sequence fi, i ∈ N,
of functions (U , E)-converges m̂U,W -a.e. to f .

Proof. Let ε > 0, δ > 0 be two arbitrary numbers. By Definition 2.2, there exist
r ∈ U , (u,w) ∈ U ×W, and a set Eε ∈ Σ, such that m̂u,w(Eε) < ε and the sequence
fi, i ∈ N, of functions (r, E \ Eε)-converges uniformly. I.e., there exists iε,δ ∈ N, such
that pr(fi(t)− f(t)) < δ for every i ≥ iε,δ, i ∈ N, and t ∈ E \ Eε.

Let ε = 1
k , k ∈ N. Then Fk = Eε ∈ Σ, k ∈ N, is a sequence of sets, such that

m̂u,w(Fk) < 1
k and the sequence fi, i ∈ N, of functions (r, E \ Fk)-converges uniformly

for every k ∈ N. Put
⋂∞

k=1 Fk = F . We have:

(1) 0 ≤ m̂u,w(F ) ≤ m̂u,w(Fk) <
1
k

Since k ∈ N is an arbitrary number, we conclude that m̂u,w(F ) = 0. Show that the
sequence fi, i ∈ N, of functions (r, E \ F )-converges to f . Indeed, if t ∈ E \ F , then
there exists k = k(t), such that t ∈ E \Fk. But pr(fi(t)− f(t)) < δ for every t ∈ E \Fk

and i ≥ iε,δ, i ∈ N.

Theorem 3.3. Let E ∈ Σ. If a sequence fi ∈ M∆,U , i ∈ N, of functions (U , E)--
converges m̂U,W -almost uniformly to a function f ∈M∆,U , then the sequence fi, i ∈ N,
of functions m̂U,W(U , E)-converges to f .

Proof. Let ε > 0, δ > 0, be two arbitrary positive numbers. By Definition 2.2, there
exist r ∈ U , (u,w) ∈ U×W, and the set F ∈ Σ, such that m̂u,w(F ) < ε and the sequence
fi, i ∈ N, of functions (r,E \F )-converges uniformly, i.e. there is i0 = i0(ε, δ) ∈ N, such
that pr(fi(t)− f(t)) < δ for every t ∈ E \ F and i ≥ i0, i ∈ N. So,

{t ∈ E; pr(fi(t)− f(t)) ≥ δ} ⊂ F,

for every i ≥ i0 and

m̂u,w({t ∈ E; pr(fi(t)− f(t)) ≥ δ}) < ε.

To prove the assertion of Theorem 3.5, we introduce the following notion of the
σ-subadditivity of the (U ,W)-semivariation.
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Definition 3.4. We say that a charge m is of σ-subadditive (U ,W)-semivariation if
m̂u,w is a σ-subadditive function for every (u,w) ∈ U ×W, i.e. if

En ∈ Σ, n ∈ N⇒ m̂u,w

( ∞⋃
n=1

En

)
≤

∞∑
n=1

m̂u,w(En).

Theorem 3.5. Let E ∈ Σ. Let a charge m be of σ-subadditive (U ,W)-semivariation.
If a sequence fi ∈ M∆,U , i ∈ N, of functions m̂U,W(U , E)-converges to a function
f ∈M∆,U , then there exists a subsequence fki

∈M∆,U , i ∈ N, of the sequence fi, i ∈ N,
which (U , E)-converges m̂U,W -almost uniformly to f .

Proof. Let E ∈ Σ. By Definition 2.3, there exist r ∈ U , (u,w) ∈ U ×W, such that for
every ε > 0, δ > 0, there exists i1 = i1(ε, δ) ∈ N, such that for every i ≥ i1, i ∈ N, the
following inequality is true:

(2) m̂u,w

({
t ∈ E; pr(fi(t)− f(t)) ≥ δ

2

})
<

ε

2
.

For every i, j ∈ N, we have

{t ∈ E; pr(fi(t)− fj(t)) ≥ δ} ⊂

(3) ⊂
{

t ∈ E; pr(fi(t)− f(t)) ≥ δ

2

}
∪

{
t ∈ E; pr(f(t)− fj(t)) ≥ δ

2

}
.

The relations (2) and (3) imply

(4) m̂u,w({t ∈ E; pr(fi(t)− fj(t)) ≥ δ}) < ε

for every i, j ≥ i1, i, j ∈ N.
For every i ∈ N there exists m = m(i) ∈ N, such that if k, l ≥ m, k, l ∈ N, then

(5) m̂u,w

({
t ∈ E; pr(fk(t)− fl(t)) ≥ 1

2i

})
<

1
2i

.

So, (5) implies that there exists a subsequence fki ∈M∆,U , i ∈ N, such that

m̂u,w

({
t ∈ E; pr(fki+1(t)− fki(t)) ≥

1
2i

})
<

1
2i

.

Without loss of generality suppose fki = fi, i ∈ N.
Show that the sequence fi, i ∈ N, of functions (U , E)-converges m̂U,W -almost uni-

formly. Put

Ei =
{

t ∈ E; pr(fi+1(t)− fi(t)) ≥ 1
2i

}
.
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There exists i2 = i2(ε, δ) ∈ N, such that 1
/ (

2i2−1
)

< ε. Put F =
⋃∞

i=i2
Ei. By the

σ-subadditivity of the (U ,W)-semivariation we obtain:

m̂u,w(F ) ≤
∞∑

i=i2

m̂u,w(Ei) <
1

2i2 − 1
< ε.

We show that the sequence fi, i ∈ N, of functions (r, E\F )-converges uniformly. Choose
i3 = i3(ε, δ) ∈ N, such that i3 ≥ i2 and 1

/ (
2i3−1

)
< δ. Then

pr(fi(t)− fj(t)) ≤
∞∑

n=i

pr(fn+1(t)− fn(t)) ≤ 1
2i−1

≤ 1
2i3−1

< δ

for every i, j ≥ i3 and t ∈ E \ F .

To prove a Egoroff-type theorem we suppose the charge m is of σ-subadditive and
continuous (U ,W)-semivariation.

Definition 3.6. We say that a charge m is of continuous (U ,W)-semivariation if for
every couple (u,w) ∈ U ×W,

En ⊃ En+1, En ∈ Σ, n ∈ N, m̂u,w(E1) < ∞,

∞⋂
n=1

En = ∅ ⇒ m̂u,w(En) ↘ 0.

Theorem 3.7 (Egoroff). Let E ∈ Σ be a set of finite (U ,W)-semivariation. Let
a charge m be of continuous and σ-subadditive (U ,W)-semivariation. If a sequence
fi ∈ M∆,U , i ∈ N, of functions (U , E)-converges m̂U,W -a.e. to a function f ∈ M∆,U ,
then the sequence fi, i ∈ N, of functions (U , E)-converges m̂U,W -almost uniformly to f .

Proof. Let ε > 0, δ > 0 be given.
By assumption, there exists a couple (u1, w1) ∈ U ×W, such that m̂u1,w1(E) < ∞.
By assumption, there exist r ∈ U , (u2, w2) ∈ U × W, such that for given δ there

exists iδ ∈ N, such that for every i ≥ iδ, i ∈ N, there holds

(6) pr(fi(t)− f(t)) < δ

for every t ∈ E \N , where m̂u2,w2(N) = 0. Put EN = E \N .
Put u = u1 ∧ u2, w = w1 ∨ w2. We have:

m̂u,w(E) ≤m̂u,w(EN ) + m̂u,w(N)

≤m̂u1,w1(EN ) + m̂u2,w2(N)

≤m̂u1,w1(EN ) + 0 < ∞.

For every j,m ∈ N, put

Bm,j =EN ∩
{

t ∈ E; pr(fi(t)− f(t)) <
1
m

and i ≥ j

}

=EN ∩
∞⋂

i=j

{
t ∈ E; pr(fi(t)− f(t)) <

1
m

}
, i ∈ N.(7)
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Clearly, if k < j, then Bm,j ⊂ Bm,k for every j, k, m ∈ N. Define

Em =
∞⋃

j=1

Bm,j ∈ Σ.

The sequence Em \ Bm,j , j ∈ N, tends to the void set for every m ∈ N. Since the
semivariation m̂U,W is continuous, there exists an index jm = jm(ε) ∈ N, such that for
every i ≥ jm, i ∈ N, there holds

m̂u,w(Em \Bm,i) <
ε

2m
.

Put

(8) F =
∞⋃

m=1

(Em \Bm,jm
) ∪N.

We have by the σ-subadditivity of the (u,w)-semivariation:

m̂u,w(F ) =m̂u,w

( ∞⋃
m=1

(Em \Bm,jm
) ∪N

)

≤
∞∑

m=1

m̂u,w(Em \Bm,jm) + m̂u,w(N) ≤
∞∑

m=1

ε

2m
+ 0 = ε(9)

Show that the sequence fi, i ∈ N, of functions (U , E \ F )-converges uniformly.
Without loss of generality suppose that δ ≤ 1. Then (6) and (7) imply

(10)
∞⋃

n=1

En = EN .

Choose m0 ∈ N, such that 1
m0

< δ. Since Bm,jm ⊂ Em, the inequalities (8) and (10)
imply:

EN \ F =EN \
∞⋃

m=1

(Em \Bm,jm) =
∞⋃

n=1

En \
∞⋃

m=1

(Em \Bm,jm)

=
∞⋂

m=1

( ∞⋃
n=1

En \ (Em \Bm,jm)

)
=

∞⋂
m=1

Bm,jm ⊂ Bm0,jm0
.(11)

By the definition of the set Bm0,jm0
, for every t ∈ Bm0,jm0

and i ≥ jm0 there is

(12) pr(fi(t)− f(t)) < δ.

So, (8), (9), (11), and (12) imply that for every ε > 0, δ > 0 there exists an index
jm0 = jm0(ε, δ) ∈ N, such that for every i ≥ jm0 , i ∈ N,

pr(fi(t)− f(t)) < δ, t ∈ EN \Bm0,i ⊃ E \ F, m̂u,w(F ) < ε,

i.e. the sequence fi, i ∈ N, of functions (U , E \ F )-converges uniformly to f .
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