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ON A SYMBOL OF OPERATORS

GENERATING FINITE DIMENSIONAL ALGEBRAS

Ján Haluška

Abstract. We investigate the so called symbol of operator generating finite dimensional
algebras. In our consideration the kernel of the symbol need not be the subset of an ideal
of some compact operators.

Introduction

In the paper [1] there were given examples showing that a finite dimensional op-
erator algebra over a ring of continuous functions is a natural generalization of the
structure of many important linear operators appearing in the research of singular in-
tegral equations. In [1] the authors introduced the notion of the so called symbol of
such an algebra. Moreover, they showed that if the kernel of the symbol is a subset
of the ideal of compact operators then all algebraic and other properties of such an
operator are characterized by the symbol alone. In this paper we deal with the case
when the kernel of the symbol need not be a subset of the ideal of compact operators.

Our approach has mainly an algebraic character. However, from the general al-
gebraic point of view the solution of such problems is not known or need not exist
in general. Further, these algebraic problems are specific for the theory of singular
integral equations, e.g. such is the problem of existence of the symbols of operators
themselves. Therefore we prefer to investigate a not general but sufficiently concrete
situation and to use terms which the theory of singular integral equations deals with.

In the paper we use upper and lower indices. In the case of the exponent we use the
brackets exclusively. The summing is executed always from 1 to K through the same
upper and lower index.

1. Definitions and basic notions

1.1. Let L be a simple closed smooth curve in the complex plane. Let C(L) be a
space of all continuous functions a : L → C with the usual supremum norm ‖.‖C(L).
Let X(L) ⊃ C(L) be a Banach space of complex valued functions on L with the norm
‖.‖X(L), such that the restriction of ‖.‖X(L) to C(L) equals to the norm ‖.‖C(L). Let
L(X(L)) be a Banach space of all continuous linear operators L : X(L) → X(L) with
the supremum norm. Let F be a subring of the space C(L) such that the operator
L : f → af, f ∈ X(L), a ∈ F , is continuous in X(L) and ‖L‖ < ‖f‖X(L).‖a‖C(L).

Let D be an ideal of compact operators in X(L).
Let Sk ∈ L(X(L)), k = 1, 2, . . . , K, be operators such that:
(a) S1 = I is a unit operator,
(b) a(Sk(fk))− Sk(af) = T (f), or shortly
aSk − Ska = T , where f ∈ X(L), a ∈ F , T ∈ D,
(c) Sk(k = 1, 2, . . . , K) are linearly independent over the ring F ,
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(d) further we suppose that the composition of two operators Si, Sj can be expressed
as follows:

(1) Si ◦ Sj =
K∑

k=1

γk
i,jSk + Ti,j

where γk
i,j ∈ F , Ti,j ∈ D, i, j = 1, 2, . . . , K.

Let us consider the operators A ∈ L(X(L)) of the following form:

A =
K∑

k=1

akSk + T,

where T ∈ D, ak ∈ F , k = 1, 2, . . . , K. The set of such operators clearly forms an
algebra. Denote it by R.

1.2. Let R be a factor algebra R/(D ∩ R). Every A ∈ R can be unambiguously
expressed in the form

A =
K∑

k=1

akSk,

where Sk is the image of the operator Sk, k = 1, 2, . . . , K, in the natural homomorphism
R→ R. Obviously

Si ◦ Sj =
K∑

k=1

γk
i,jSk,

where γk
i,j , i, j, k = 1, 2, . . .K, are the same functions as in (1). Both R and R are

algebras with units. The algebra R is a left and right free module over the ring F ,
shortly F-module. We shall say that the system

{Sk; k = 1, 2, . . . , K} = S
forms a basis of the F-module R.

1.3. Lemma. Let [bi
j(t)], i, j = 1, 2, . . . ,K, be a regular matrix for every t ∈ L and let

(2) P k =
K∑

j=1

bj
kSj

where bj
k ∈ F for j, k = 1, 2, . . . , K, is a linear transform of the basis S onto the basis

P = {Pk; k = 1, 2, . . . ,K}.
Let [cp

k], p, k = 1, 2, . . . , K, be the matrix of the inverse transform to the (2). Then
(1) implies the following rule of the operator composition:

Pm ◦ Pn =
K∑

p=1

ηp
m,nP p,
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where

ηp
m,n =

K∑

i=1

K∑

j=1

K∑

k=1

bj
mbi

nγk
i,jc

p
k,

and m, n, p = 1, 2, . . . K.

1.4. For every X ∈ R denote

Â =
K∑

k=1

γi
k,ja

k, i, j = 1, 2, . . . , K,

the matrix of the operator FA : X → A ◦ X with respect to the basis S. Suppose
further that there exists the following decomposition of det Â:

det Â =
K∏

j=1

σj
A,

where

σj
A =

K∑

i=1

λj
ia

i,

where λj
i , i, j = 1, 2, . . . ,K, are some functions from F . Note that in general it is not

always possible, cf. [1]. Now, we define

symA = σA = (σ1
A, σ2

A, . . . , σK
A ) ∈ (F)K ,

cf. [1], 2◦. So, we define the symbol of the operator A ∈ R as the map sym in the
following way:

A −−−−→ A −−−−→ FAy
y

y
σA ←−−−− det Â ←−−−− Â

The operation of addition and also of multiplication of symbols are defined coordi-
natewisely. Evidently the F-module (F)K is an algebra.

1.5. Lemma. The map sym : R→ (F)K is a homomorphism if and only if

(3) λp
i λ

p
j =

K∑

k=1

γk
i,jλ

p
k

where i, j, p = 1, 2, . . . ,K.

Remark. Let us note that the condition (3) is only necessary for proving that the
function sym preserve multiplication.
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1.6. Corollary. If ker(sym) ⊂ D, then the function sym : R → (F)K is an isomor-
phism. To this end it is enough to have

(4) det[λp
k(t)] 6= 0

for every t ∈ L, where p, k = 1, 2, . . . ,K, which follows from (3).

1.7. Remark. If (4) is valid, then some necessary and sufficient conditions of the
noetherness of the operator A ∈ R with respect to the symbol sym(A) are known. In
this case we are able to compute the index of operators with respect to the symbol of
operators and to the homotopic invariants of the ring F , cf. [1], 3◦.

2. Case ker(sym) 6⊂ D
2.1. The consideration of the case ker(sym) 6⊂ D is equivalent to determining such

an ideal H which should be a kernel of a homomorphism of the algebra R into some
module of functions over F . In the paper [1] the authors considered only the case (4),
but this situation is not typical for the algebra R. Indeed, (3) implies:

λp
i λ

p
j =

K∑

k=1

γk
i,jλ

p
k

and

γp
j λp

i =
K∑

k=1

γk
j,iλ

p
k,

where i, j, k, p = 1, 2, . . . , K. After subtracting these two equations we get for every
t ∈ L:

(5) 0 =
K∑

k=1

(γk
i,j − γk

j,i)λ
p
k,

where i, j, p = 1, 2, . . . , K.
When (4) is true, then the system (5) of the linear equations with the coefficients

λp
k, k, p = 1, 2, . . . , K, for every t ∈ L, has only a trivial solution, and so the algebra R

is commutative. In other words, if the algebra R is not commutative, then certainly
there exists a point t0 ∈ L, such that

det[λi
j(t0)] = O, i, j = 1, 2, . . . ,K.

2.2. Theorem. Let A ∈ R and the symbol σA exists. Then for a fixed m,m =
1, 2, . . . ,K, the set

(6) Hm = {A ∈ R;σm
A = O}

is a maximal ideal of the algebra R.
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Proof. Let us have two operators X, A ∈ R, so

X =
K∑

i=1

xiSi and A =
K∑
=1

ajSj .

Immediately from (b) and (d) we have:

A ◦X = (
K∑

i=1

aiSi) ◦ (
K∑

j=1

xjSi) =

(7) =
K∑

i=1

aixjSi ◦ Sj =
K∑

i=1

K∑

j=1

K∑

k=1

aixjγk
i,jSk.

From (a) and (3) it follows that λm
1 = 1.

We show first that Hm is an ideal.
Consider the new basis P = {P i; i = 1, 2, . . . , K} of the F-module R with the

following property:

(8) (S1, S2, . . . , SK) = (P 1, P 2, . . . , PK) det




λm
1 , λm

2 , λm
3 , . . . , λm

K

0, 1, 0, . . . , 0
0, 0, 1, . . . , 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0, 0, 0, . . . , 1


 .

Since λm
1 = 1, the transform (8) is regular for every t ∈ L. (8), (7) and (3) imply

(9) A ◦X = σm
A P 1σ

m
X +

K∑

i=1

γi
k,nakxnP i.

From (8) we have:

(10) A =
K∑

i=1

aiSi = σm
A P 1 +

K∑

i=2

aiP i.

Take A ∈ Hm and X ∈ R. (9) and (10) imply A ◦X ∈ Hm and X ◦A ∈ Hm.
The maximality of the ideal Hm follows from the dimensional reasons. ¤

2.3. Corollary. It follows from (9) that the F-factor module R/Hm,m = 1, 2, . . . ,
K, is a commutative algebra.

2.4. Corollary. Again from (9) and the fact that P is a basis of R we obtain that
the number of the different maximal ideals of algebra R is not greater than K.
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2.5. Corollary. If (4) is true, then we may take a matrix [λi
j ], i, j = 1, 2, . . . , K,

instead of the matrix 


λm
1 , λm

2 , λm
3 , . . . , λm

K

0, 1, 0, . . . , 0
0, 0, 1, . . . , 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
0, 0, 0, . . . , 1




in the proof of the theorem. Then (9) and (10) can be rewritten in the following way:

A ◦X =
K∑

i=1

σi
AP iσ

i
X , A =

K∑

i=1

σi
AP i.

The fact, that the algebra R is a direct sum of the ideals

Hm = {A ∈ R; A = amPm},

m = 1, 2, . . . , K, is implied by the diagonality of the matrix Â with respect to the basis
P.

2.6. Corollary. Let us denote

H =
K⋂

m=1

Hm.

The ideal H is a kernel of the considered homomorphism. If the matrix Â has a constant
rank, rankÂ = r, 1 ≤ r ≤ K, over the whole curve L, then R/H → (F)r is an
isomorphism and the algebra R/H is commutative, where the ideal H = H+ (D ∩R).

To illustrate our result we give the following example.

2.7. Example. Let X(L) = Lp(L), p > 1, I denote the unit operator, S be a singular
operator, and N be an operator with the polar-logarithm kernel. Recall that

(Sf)(t) =
1
πi

∫

L

f(v)
v − t

dv, t ∈ L, f ∈ F ,

(N f)(t) =
1

2πi

∫

L

f(v)
(v − t)(ln(v − t)

dv, t ∈ L, f ∈ F ,

where the operators S and N are defined on a Hölder’s space Hµ(L), 0 < µ < 1, as
Cauchy singular integrals and then they are extended to Lp(L), p > 1.

The composition rules of operators in our algebra R,

R = {A ∈ L(X(L));A = aI + bS + cN + T, T ∈ D},
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are given by the properties of operators N and S, cf. [2], pp. 606 -609, Corollary of
Theorem 3. Namely:

S2 = I,

N 2 = −ωN + T,

S ◦ N = ωI +N − ωS + T,

N ◦ S = −N + T,

where ω ∈ F , T ∈ D. We have

Â =




a, cω, c
b, a− bω + c, −b
c, −cω, a


 ,

det Â = (a + c)2(a− bω − c).

So, over the whole curve L rankÂ = 2 = const. We have

H = {A ∈ R; a + c = 0, a− bω − c = 0},

(I,N ,S) = (P 1, P 2, P 3)




1, −ω, −1
1, 0, 1
0, 1, 0


 ,

H = {d(wI + 2N − ωS) ∈ R},
S ◦ N −N ◦ S = ωI + 2N − ωS ∈ H,

where d, ω ∈ F . We see that R̂ = R/H is a commutative algebra. ¤

2.8. Problem. Does there exist a symbol of that operator A ∈ R considered in [3]?
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